Generalized Galois Numbers, Inversions, Lattice Paths, Ferrers Diagrams and Limit Theorems
نویسندگان
چکیده
منابع مشابه
Generalized Galois Numbers, Inversions, Lattice Paths, Ferrers Diagrams and Limit Theorems
Bliem and Kousidis recently considered a family of random variables whose distributions are given by the generalized Galois numbers (after normalization). We give probabilistic interpretations of these random variables, using inversions in random words, random lattice paths and random Ferrers diagrams, and use these to give new proofs of limit theorems as well as some further limit results.
متن کاملCombinatorics of Arc Diagrams, Ferrers Fillings, Young Tableaux and Lattice Paths
Several recent works have explored the deep structure between arc diagrams, their nestings and crossings, and several other combinatorial objects including permutations, graphs, lattice paths, and walks in the Cartesian plane. This thesis inspects a range of related combinatorial objects that can be represented by arc diagrams, relationships between them, and their connection to nestings and cr...
متن کاملDiscrete Rough Paths and Limit Theorems
Abstract. In this article, we consider limit theorems for some weighted type random sums (or discrete rough integrals). We introduce a general transfer principle from limit theorems for unweighted sums to limit theorems for weighted sums via rough path techniques. As a by-product, we provide a natural explanation of the various new asymptotic behaviors in contrast with the classical unweighted ...
متن کاملEnumeration of skew Ferrers diagrams
Delest, M. In this paper, we show that the generating function for skew Ferrers diagrams according to their width and area is the quotient of new basic Bessel functions. Nous montrons dans cet article que la fonction g&ntratrice des diagrammes de Ferrers gauches selon les paramktres ptrimttre et aire s'exprime en fonction du quotient des q analogues de deux fonctions de Bessel.
متن کاملRefined Chung-Feller theorems for lattice paths
In this paper we prove a strengthening of the classical Chung-Feller theorem and a weighted version for Schröder paths. Both results are proved by refined bijections which are developed from the study of Taylor expansions of generating functions. By the same technique, we establish variants of the bijections for Catalan paths of order d and certain families of Motzkin paths. Moreover, we obtain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2012
ISSN: 1077-8926
DOI: 10.37236/2188