Generalized Galois Numbers, Inversions, Lattice Paths, Ferrers Diagrams and Limit Theorems

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Galois Numbers, Inversions, Lattice Paths, Ferrers Diagrams and Limit Theorems

Bliem and Kousidis recently considered a family of random variables whose distributions are given by the generalized Galois numbers (after normalization). We give probabilistic interpretations of these random variables, using inversions in random words, random lattice paths and random Ferrers diagrams, and use these to give new proofs of limit theorems as well as some further limit results.

متن کامل

Combinatorics of Arc Diagrams, Ferrers Fillings, Young Tableaux and Lattice Paths

Several recent works have explored the deep structure between arc diagrams, their nestings and crossings, and several other combinatorial objects including permutations, graphs, lattice paths, and walks in the Cartesian plane. This thesis inspects a range of related combinatorial objects that can be represented by arc diagrams, relationships between them, and their connection to nestings and cr...

متن کامل

Discrete Rough Paths and Limit Theorems

Abstract. In this article, we consider limit theorems for some weighted type random sums (or discrete rough integrals). We introduce a general transfer principle from limit theorems for unweighted sums to limit theorems for weighted sums via rough path techniques. As a by-product, we provide a natural explanation of the various new asymptotic behaviors in contrast with the classical unweighted ...

متن کامل

Enumeration of skew Ferrers diagrams

Delest, M. In this paper, we show that the generating function for skew Ferrers diagrams according to their width and area is the quotient of new basic Bessel functions. Nous montrons dans cet article que la fonction g&ntratrice des diagrammes de Ferrers gauches selon les paramktres ptrimttre et aire s'exprime en fonction du quotient des q analogues de deux fonctions de Bessel.

متن کامل

Refined Chung-Feller theorems for lattice paths

In this paper we prove a strengthening of the classical Chung-Feller theorem and a weighted version for Schröder paths. Both results are proved by refined bijections which are developed from the study of Taylor expansions of generating functions. By the same technique, we establish variants of the bijections for Catalan paths of order d and certain families of Motzkin paths. Moreover, we obtain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2012

ISSN: 1077-8926

DOI: 10.37236/2188